

Good M&V Planning

John Cowan

Environmental Interface Limited

Toronto, Canada

jcowan@environmentalinterface.com

(416) 322-6569

Program Outline:

John Cowan:

- List the current Industry M&V Standards
- The Contents of an M&V Plan
- The process of developing an M&V Plan
- The M&V cost trade-off

The Rest of the Panel:

- Views on M&V Planning from the Navy, Air Force & an ESCO
- Directions From the "M&V Summit"

John Cowan & M&V

Professional Engineer - Energy Management ESCO co-founder

Consulting Owner's Rep in ESCO procurement and negotiation matters & savings verification

IPMVP Technical Committee, co-chair

AEE/IPMVP Certification Board (CMVP)

Author and Instructor of the M&V course cosponsored in US/Canada by AEE/IPMVP

Consultant/Verifier for emission trades

Industry Standards

IPMVP - Volumes 1 & 2(2001) and Vol 3(2003)

Defines many terms and the structure used in:

FEMP M&V Guideline v2.2:

- some details on methods for federal projects.
- mostly consistent with IPMVP 2001, except Stipulation can remove IPMVP's need for on-site energy measurement.
- FEMP discussion document on the pitfalls of Stipulation.

• ASHRAE Guideline 14:

- details on methods, metering and uncertainty.
- mostly consistent with IPMVP except <u>no</u> Stipulation.

M&V Plan Contents (A)

- Select Option: 1) Retrofit Isolation (with or without partial or full stipulation), 2) Whole Building, or 3) Calibrated Simulation. Consider:
 - Measurement boundary and related metering points as determined by responsibilities for: a) energy performance, and b) gathering of energy and other data for baseline and life of M&V
 - Methods of dealing with interactive effects outside the boundary
 - Analysis/justification of stipulation

- Meter system design: meter range accuracy & reliability, data capture & management, synchronization with utility demand readings.
- Baseline data within the measurement boundary:
 - Energy, weather (and/or other variables for routine adjustments)
 - operational and "static" factors the basis for future non-routine baseline adjustments.

2003 M&V Plan Contents (C)

- Responsibilities for ongoing data gathering within the measurement boundary:
 - routine items of energy, weather/other variables
 - static factors to define 'material change' for non-routine 'baseline adjustments."
- Maintenance of meter system: procedures.
- **Data analysis** procedures mathematical formulae and justification.
- Quality control procedures.

M&V Planning Process

Progressively develop the M&V Plan, <u>during</u> retrofit design, to ensure:

- intended results are measurable
- M&V cost is included in retrofit economics
- plan is agreed before "money is on the table"

M&V Planning is as iterative as the retrofit design process.

How Much is Too Much?

- Are you comfortable with:
 - the amount of information you will have for operational control, from M&V or other information sources?
 - the level of <u>uncertainty</u> in reported savings, arising from: meter accuracy, sampling variance, modelling variance?
- If NOT, spend more on M&V:
- up to 10% of the savings, hopefully far less
 August 17-20, 2003
 www.energy2003.ee.doe.gov

How Little is Too Little?

- What else will you do with the avoided M&V cost:
 - Install more retrofits? (= more savings)
 - Reduce project payback?
 - Install more equipment for operational feedback?
 - Skip the country?
- K.I.S.S.

Every Owner, Project and Contract situation is different.

You must establish your own comfort level for the cost/uncertainty tradeoff.

M&V Plan Summary

Sorry!

There are no cookbook answers!

So.....

Get good M&V skills on your team!